|
|- |bgcolor=#e7dcc3|Coxeter diagrams|| ↔ ↔ ↔ |- |bgcolor=#e7dcc3|Cells|| 40px 40px 40px |- |bgcolor=#e7dcc3|Faces||Square |- |bgcolor=#e7dcc3|Edge figure||Triangle |- |bgcolor=#e7dcc3|Vertex figure||80px cube, |- |bgcolor=#e7dcc3|Dual||Order-4 octahedral honeycomb |- |bgcolor=#e7dcc3|Coxeter groups||() () ↔ () |- |bgcolor=#e7dcc3|Properties||Regular |} In the geometry of hyperbolic 3-space, the square tiling honeycomb, is one of 11 paracompact regular honeycombs. It is called ''paracompact'' because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol , has three square tilings, around each edge, and 6 square tilings around each vertex in an cubic vertex figure.〔Coxeter ''The Beauty of Geometry'', 1999, Chapter 10, Table III〕 == Rectified order-4 square tiling == It is also seen as a rectified order-4 square tiling honeycomb, r: = |- !|| = |- |240px||240px |} 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Square tiling honeycomb」の詳細全文を読む スポンサード リンク
|